If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2=4z-1
We move all terms to the left:
z^2-(4z-1)=0
We get rid of parentheses
z^2-4z+1=0
a = 1; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3}}{2*1}=\frac{4-2\sqrt{3}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3}}{2*1}=\frac{4+2\sqrt{3}}{2} $
| 19/24=-⅚t-1/4 | | 1+5n=11+7n | | 0.5(3k+87)=1.5+43.5 | | 6p7+16=4 | | 2=5g-18 | | -8(7+8x)=-312 | | 4(x+3)-2x=3x+12-x | | -81=-4+7n | | |7-3x|-2=12 | | πr^2=64π | | 10x-4+5=20 | | x-7/6+2x-1/3=1 | | 7(a-84)=42 | | 2(7-9m)=176 | | 139-w=253 | | a4−1=3 | | 5x+6=3 | | 1x+3=13x | | 2-3(12x-6x)=4(-8x+4)-30 | | 7^(6x+1)=7^(5x+5) | | 4(3x-2)=7x+8 | | 10v+10=–8v | | -7v-5=67+5v | | 2=n/2-7 | | 4a–2=2a+8 | | -7v-5=67 | | f-16=19 | | 51=6+5x | | c/3+11=13 | | (10x-4)÷5=20 | | 83+16=4z+7z | | -3(-3m+5)=3 |